Simon Andermatt, Simon Pezold, and Philippe Cattin
Medical Image Analysis Center
2nd Workshop on Deep Learning in Medical Image Analysis in Conjunction with MICCAI 2016
TanH | LSTM | GRU |
---|---|---|
|
|
|
MD-GRU Layer: 1 C-GRU for each direction & dimension
$r^j = \sigma \left( \sum\limits_i^I (x^i\color{red}*\color{black}w_r^{i,j}) + \sum\limits_k^J ( h_{t-1}^k\color{red}*\color{black}u_r^{k,j} ) \color{red}+b^j_r\color{black}\right),$ $z^j = \sigma \left( \sum\limits_i^I (x^i\color{red}*\color{black}w_z^{i,j}) + \sum\limits_k^J ( h_{t-1}^k\color{red}*\color{black}u_z^{k,j} ) \color{red}+b^j_z\color{black}\right),$ $\tilde{h}^j_t = \phi \left( \sum\limits_i^I (x^i\color{red}*\color{black}w^{i,j}) + \color{red}r^j \odot\color{black} \sum\limits_k^J ( h_{t-1}^k \color{red}*\color{black} u^{k,j} ) \color{red}+b^j\color{black}\right),$ $h^j_{t} = z^j\odot h^j_{t-1} + (1-z^j)\odot\tilde{h}^j_{t}.$[1] Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: Parallel Multi- Dimensional LSTM, With Application to Fast Biomedical Volumetric Image Segmentation. Advances in Neural Information Processing Systems 28, pp. 2998–3006. (2015)
[1] Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: Parallel Multi- Dimensional LSTM, With Application to Fast Biomedical Volumetric Image Segmentation. Advances in Neural Information Processing Systems 28, pp. 2998–3006. (2015)
[2] Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. arXiv:1606.06650 [cs] (Jun 2016)
[3] Chen, Hao, et al. VoxResNet: Deep Voxelwise Residual Networks for Volumetric Brain Segmentation. arXiv preprint arXiv:1608.05895 (2016).